Numerical Methods

1 a Show that the equation $x^{3}-7 x-11=0$ has a real root in the interval (3, 4).
b Using the iterative formula $x_{n+1}=\sqrt{7+\frac{11}{x_{n}}}$, with $x_{0}=3.2$, find x_{1}, x_{2} and x_{3}, giving the value of x_{3} correct to 2 decimal places.

2

$$
\mathrm{f}(x) \equiv 4 \operatorname{cosec} x-5+2 x
$$

a Find the values of $\mathrm{f}(4)$ and $\mathrm{f}(5)$.
b Hence show that the equation $\mathrm{f}(x)=0$ has a root in the interval $(4,5)$.
The iterative formula $x_{n+1}=a+\frac{b}{\sin x_{n}}$, where a and b are constants, is used to find this root.
c Find the values of a and b.
d Starting with $x_{0}=4.5$, use the iterative formula with your values of a and b to find 3 further approximations of the root, giving your final answer correct to 3 decimal places.

3

The diagram shows the curve with equation $y=\mathrm{f}(x)$ where

$$
\mathrm{f}: x \rightarrow 2 x+\ln (3 x-1), x \in \mathbb{R}, x>\frac{1}{3} .
$$

Given that $\mathrm{f}(\alpha)=0$,
a show that $0.4<\alpha<0.5$,
b use the iterative formula $x_{n+1}=\frac{1}{3}\left(1+\mathrm{e}^{-2 x_{n}}\right)$, with $x_{0}=0.45$, to find the value of α correct to 3 decimal places.

4 a On the same set of axes, sketch the curves $y=\cos x$ and $y=x^{2}$ for $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
b Show that the equation $\cos x-x^{2}=0$ has exactly one positive and one negative real root.
c Show that the positive real root lies in the interval [0.8, 0.9].
d Use the iteration formula $x_{n+1}=\sqrt{\cos x_{n}}$ and the starting value $x_{0}=0.8$ to find the positive root correct to 2 decimal places.

5

$$
\mathrm{f}(x) \equiv \mathrm{e}^{5-2 x}-x^{5}
$$

Show that the equation $\mathrm{f}(x)=0$
a has a root in the interval (1.4, 1.5),
b can be written as $x=\mathrm{e}^{1-k x}$, stating the value of k.
c Using the iteration formula $x_{n+1}=\mathrm{e}^{1-k x_{n}}$, with $x_{0}=1.5$ and the value of k found in part \mathbf{b}, find x_{1}, x_{2} and x_{3}. Give the value of x_{3} correct to 3 decimal places.

6
a Show that there is a solution of the equation $\mathrm{f}(x)=0$ in the interval $1.3<x<1.4$
b Using the iterative formula $x_{n+1}=\sqrt[3]{5-2^{x_{n}}}$, with $x_{0}=1.4$, find x_{1}, x_{2}, x_{3} and x_{4}.
c Hence write down an approximation for this solution of the equation $\mathrm{f}(x)=0$ to an appropriate degree of accuracy.
Another attempt is made to find the solution using the iterative formula $x_{n+1}=\frac{\ln \left(5-x_{n}{ }^{3}\right)}{\ln 2}$.
d Describe the outcome of this attempt.

$$
\mathrm{f}(x)=2 x^{3}+4 x-9 .
$$

a Find $\mathrm{f}^{\prime}(x)$.
b Hence show that the equation $\mathrm{f}(x)=0$ has exactly one real root.
c Show that this root lies in the interval $(1.2,1.3)$.
d Use the iterative formula $x_{n+1}=\sqrt[3]{4.5-2 x_{n}}$, with $x_{0}=1.2$, to find the root of $\mathrm{f}(x)=0$ correct to 2 decimal places.
e Justify the accuracy of your answer.
8

The diagram shows part of the curve with equation $y=3 x+\ln x-x^{2}$ and the line $y=x$.
Given that the curve and line intersect at the points A and B, show that
a the x-coordinates of A and B are the solutions of the equation $x=\mathrm{e}^{x^{2}-2 x}$,
b the x-coordinate of A lies in the interval $(0.4,0.5)$,
c the x-coordinate of B lies in the interval $(2.3,2.4)$.
d Use the iteration formula $x_{n+1}=\mathrm{e}^{x_{n}^{2}-2 x_{n}}$, with $x_{0}=0.5$, to find the x-coordinate of A correct to 2 decimal places.
e Justify the accuracy of your answer to part d.
9 a On the same set of axes, sketch the graphs of $y=x^{4}$ and $y=5 x+2$.
b Show that the equation $x^{4}-5 x-2=0$ has exactly one positive and one negative real root.
c Use the iteration formula $x_{n+1}=\sqrt[4]{5 x_{n}+2}$, with $x_{0}=1.8$, to find x_{1}, x_{2}, x_{3} and x_{4}, giving the value of x_{4} correct to 3 decimal places.
d Show that the equation $x^{4}-5 x-2=0$ can be written in the form $x=\frac{a}{x^{3}+b}$, stating the values of a and b.
e Use the iteration formula $x_{n+1}=\frac{a}{x_{n}^{3}+b}$, with $x_{0}=-0.4$ and your values of a and b, to find the negative real root of the equation correct to 4 decimal places.

