NUMERICAL METHODS

- **a** Show that the equation $x^3 7x 11 = 0$ has a real root in the interval (3, 4).
 - **b** Using the iterative formula $x_{n+1} = \sqrt{7 + \frac{11}{x_n}}$, with $x_0 = 3.2$, find x_1, x_2 and x_3 , giving the value of x_3 correct to 2 decimal places.
- 2

 $f(x) \equiv 4 \operatorname{cosec} x - 5 + 2x.$

- **a** Find the values of f(4) and f(5).
- **b** Hence show that the equation f(x) = 0 has a root in the interval (4, 5).

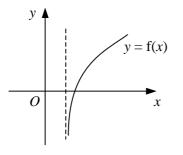
The iterative formula $x_{n+1} = a + \frac{b}{\sin x}$, where *a* and *b* are constants, is used to find this root.

- **c** Find the values of *a* and *b*.
- **d** Starting with $x_0 = 4.5$, use the iterative formula with your values of *a* and *b* to find 3 further approximations of the root, giving your final answer correct to 3 decimal places.

3

4

5



The diagram shows the curve with equation y = f(x) where

$$f: x \to 2x + \ln (3x - 1), x \in \mathbb{R}, x > \frac{1}{3}.$$

Given that $f(\alpha) = 0$,

- **a** show that $0.4 < \alpha < 0.5$,
- **b** use the iterative formula $x_{n+1} = \frac{1}{3}(1 + e^{-2x_n})$, with $x_0 = 0.45$, to find the value of α correct to 3 decimal places.
- **a** On the same set of axes, sketch the curves $y = \cos x$ and $y = x^2$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$.
 - **b** Show that the equation $\cos x x^2 = 0$ has exactly one positive and one negative real root.
 - c Show that the positive real root lies in the interval [0.8, 0.9].
 - **d** Use the iteration formula $x_{n+1} = \sqrt{\cos x_n}$ and the starting value $x_0 = 0.8$ to find the positive root correct to 2 decimal places.

Show that the equation f(x) = 0

- **a** has a root in the interval (1.4, 1.5),
- **b** can be written as $x = e^{1-kx}$, stating the value of k.

 $\mathbf{f}(x) \equiv \mathbf{e}^{5-2x} - x^5.$

c Using the iteration formula $x_{n+1} = e^{1-kx_n}$, with $x_0 = 1.5$ and the value of k found in part **b**, find x_1, x_2 and x_3 . Give the value of x_3 correct to 3 decimal places.

NUMERICAL METHODS

continued

6

 $f: x \rightarrow 2^x + x^3 - 5, x \in \mathbb{R}.$

- **a** Show that there is a solution of the equation f(x) = 0 in the interval 1.3 < x < 1.4
- **b** Using the iterative formula $x_{n+1} = \sqrt[3]{5-2^{x_n}}$, with $x_0 = 1.4$, find x_1, x_2, x_3 and x_4 .
- **c** Hence write down an approximation for this solution of the equation f(x) = 0 to an appropriate degree of accuracy.

Another attempt is made to find the solution using the iterative formula $x_{n+1} = \frac{\ln (5 - x_n^3)}{\ln 2}$.

d Describe the outcome of this attempt.

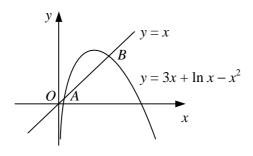
$$f(x) = 2x^3 + 4x - 9$$

- **a** Find f'(x).
- **b** Hence show that the equation f(x) = 0 has exactly one real root.
- **c** Show that this root lies in the interval (1.2, 1.3).
- **d** Use the iterative formula $x_{n+1} = \sqrt[3]{4.5 2x_n}$, with $x_0 = 1.2$, to find the root of f(x) = 0 correct to 2 decimal places.
- e Justify the accuracy of your answer.

8

9

7



The diagram shows part of the curve with equation $y = 3x + \ln x - x^2$ and the line y = x. Given that the curve and line intersect at the points A and B, show that

- **a** the x-coordinates of A and B are the solutions of the equation $x = e^{x^2 2x}$,
- **b** the *x*-coordinate of *A* lies in the interval (0.4, 0.5),
- **c** the *x*-coordinate of *B* lies in the interval (2.3, 2.4).
- **d** Use the iteration formula $x_{n+1} = e^{x_n^2 2x_n}$, with $x_0 = 0.5$, to find the *x*-coordinate of *A* correct to 2 decimal places.
- e Justify the accuracy of your answer to part d.
- **a** On the same set of axes, sketch the graphs of $y = x^4$ and y = 5x + 2.
 - **b** Show that the equation $x^4 5x 2 = 0$ has exactly one positive and one negative real root.
 - **c** Use the iteration formula $x_{n+1} = \sqrt[4]{5x_n + 2}$, with $x_0 = 1.8$, to find x_1, x_2, x_3 and x_4 , giving the value of x_4 correct to 3 decimal places.
 - **d** Show that the equation $x^4 5x 2 = 0$ can be written in the form $x = \frac{a}{x^3 + b}$, stating the values of *a* and *b*.
 - e Use the iteration formula $x_{n+1} = \frac{a}{x_n^3 + b}$, with $x_0 = -0.4$ and your values of *a* and *b*, to find the negative real root of the equation correct to 4 decimal places.

© Solomon Press